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A B S T R A C T

The material point method (MPM) is often used to simulate soils that interact with (nearly) rigid objects,
such as structures, machines, or rocks. Yet MPM simulations of such problems are quite challenging when the
objects have complex shapes. In this paper, we propose an efficient approach for incorporating geometrically
complex rigid objects into MPM modeling. The proposed approach leverages the level set method, which can
efficiently delineate arbitrary surface geometry, to represent the boundary of a discrete object. For coupling
the level set object with the MPM domain, a robust algorithm is developed on the basis of contact mechanics.
Through numerical examples of varied complexity, we verify the proposed approach and demonstrate its
ability to efficiently simulate challenging problems wherein soils interact with complex rigid objects such
as debris-resisting baffles, a vehicle wheel, and basal terrain.
1. Introduction

The material point method (MPM) has become a popular tech-
nique to simulate soils interacting with (nearly) rigid objects such as
structures, machines, or rocks. These interactions are central to a va-
riety of applications including infrastructure construction, geohazards
mitigation, and terramechanics.

To represent stiff objects in MPM modeling, existing works have
relied mainly on two types of approaches: (i) particle-based represen-
tations (e.g. Dunatunga and Kamrin, 2017; Xu et al., 2019; Agarwal
et al., 2021; Zhao et al., 2021; Lei et al., 2022) and (ii) mesh-based
representations (e.g. Lian et al., 2011; Chen et al., 2015; Song et al.,
2020; Li et al., 2022). The former approach models an object as an
assembly of material points that are far stiffer than soils. The latter ap-
proach represents an object with a separate mesh-based discretization
scheme such as finite elements. It is noted that both types of approaches
commonly require an algorithm for treating the contact between the
soil domain (material points) and the object domain (an assembly of
material points or a mesh). These approaches can well handle objects
with relatively simple shapes.

When the object has complex geometry, however, both particle-
based and mesh-based representations are sub-optimal. As an example,
Fig. 1 illustrates how the two types of approaches represent a wheel
of a real-world vehicle (NASA, 2020a). As can be seen, particle-based

∗ Corresponding author.
E-mail address: jinhyun.choo@kaist.ac.kr (J. Choo).

representations are inherently unable to describe complex shapes pre-
cisely. Mesh-based representations may be sufficiently accurate, but
their coupling with the MPM involves high computational cost for
implementation and execution. For these reasons, neither a particle-
based nor a mesh-based approach is ideal for handling stiff objects that
interact with an MPM domain.

In this work, we propose an efficient approach for simulating soils
interacting with rigid objects with complex geometry. The proposed
approach is built on two kinds of methods. The first one is the cou-
pled material-point and discrete-element method (MP-DEM) (Jiang
et al., 2020, 2022), which is a hybrid continuum–discrete approach
for simulating interactions between soft materials and rigid objects.
The upshot of the MP-DEM is that it only requires us to represent
the boundary of an object, because it treats the object as rigid. This
treatment has been verified and validated against analytical solutions
and experimental data involving interactions between materials with
high stiffness contrast. However, it should be noted that the existing
MP-DEM framework is limited to objects with quite simple geometry
(e.g. sphere and square) that can be represented in an analytical way.

The second method on which this work draws is the level set
method (Osher and Fedkiw, 2003) – a powerful technique that can
efficiently delineate arbitrary surface geometry – which has been uti-
lized in a wide range of problems involving complex surfaces. Notably,
the level set method has recently enabled the DEM to seamlessly
vailable online 14 August 2023
266-352X/© 2023 Elsevier Ltd. All rights reserved.
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Fig. 1. Particle-based and mesh-based representations of a wheel (NASA, 2020a).
accommodate grains with complex shapes (Kawamoto et al., 2016,
2018; Li et al., 2019). However, it has not been utilized to represent
rigid objects that interact with soft materials discretized by the MPM
or any other continuum particle methods. To our knowledge, this
work is the first to propose the use of the level set method to deal
with geometrically complex rigid objects interacting with a continuum
particle method such as the MPM.

The remainder of the paper proceeds as follows. In Section 2, we
recapitulate the standard MPM formulation for soils undergoing large
deformations. In Section 3, we present a level set approach for repre-
senting rigid objects with arbitrary boundary geometry. In Section 4,
we develop an algorithm that couples the MPM domain and the level
set objects on the basis of contact mechanics. In Section 5, we describe
various numerical examples to verify and demonstrate the performance
of the proposed approach. In Section 6, we provide concluding remarks.

2. Material point method for soils under large deformation

In this section, we summarize the standard MPM formulation for a
continuum body undergoing large deformation. For more details of the
MPM formulation and related backgrounds, we refer to Nguyen (2014),
Jiang et al. (2016), Zhang et al. (2016) and de Vaucorbeil et al. (2020).

2.1. Problem statement

Consider a continuum body that fills in 𝛺 ∈ R𝑑 in the current
configuration, where 𝑑 denotes the spatial dimension. The boundary
of the domain is denoted by 𝜕𝛺 and decomposed into the displacement
(Dirichlet) boundary 𝜕𝑢𝛺, and the traction (Neumann) boundary 𝜕𝑡𝛺,
satisfying 𝜕𝑢𝛺 ∪ 𝜕𝑡𝛺 = 𝜕𝛺 and 𝜕𝑢𝛺 ∩ 𝜕𝑡𝛺 = ∅. The time domain is
denoted by  ∶= (0, 𝑇 ] with 𝑇 > 0.

To describe large-deformation kinematics accurately, one must use
finite deformation theory that distinguishes between the reference
and current configurations. Let us denote the position vectors in the
reference and current configurations by 𝑿 and 𝒙, respectively. The
displacement, velocity, and acceleration vectors are then defined as
𝒖 ∶= 𝒙 − 𝑿, 𝒗 ∶= �̇� and 𝒂 ∶= �̈�, respectively, where the dot denotes
2

the material time derivative. The deformation gradient 𝑭 is defined as

𝑭 ∶= 𝜕𝒙
𝜕𝑿

= 𝟏 + 𝜕𝒖
𝜕𝑿

, (1)

where 𝟏 is the second-order identity tensor. The Jacobian (determinant)
is defined as

𝐽 ∶= det(𝑭 ) = d𝑣∕d𝑉 > 0, (2)

where d𝑉 and d𝑣 are the differential volumes in the reference and
current configurations, respectively.

The standard MPM uses an updated Lagrangian method, whereby
the balance of linear momentum is formulated in the current configu-
ration as

∇ ⋅ 𝝈(𝑭 ) + 𝜌𝒈 = 𝜌𝒂 in 𝛺 ×  , (3)

where 𝝈 is the Cauchy stress tensor, ∇⋅ is the divergence operator
calculated in the current configuration, 𝜌 is the current mass density,
and 𝒈 is the gravitational acceleration vector. To close the formulation,
one must introduce a constitutive law that relates the stress tensor
and the deformation gradient tensor. A wide range of constitutive
laws are available for geomaterials in various deformation regimes,
see, e.g. Manzari and Dafalias (1997), Borja and Tamagnini (1998),
Jop et al. (2006), Andrade et al. (2012), Borja and Choo (2016) and
Choo (2018). To deal with elastoplastic constitutive equations in the
finite deformation range, we employ the combination of hyperelasticity
and multiplicative plasticity (Simo and Ortiz, 1985). Importantly, this
approach allows one to bypass the issue of selecting a proper objective
stress rate, which is an unresolved issue in the literature.

To furnish the initial–boundary-value problem of interest, let us
introduce the initial condition as 𝒖 = 𝒖0 at 𝑡 = 0, and the boundary
conditions as

𝒖 = �̂� on 𝜕𝑢𝛺 ×  , (4)

𝒏 ⋅ 𝝈 = �̂� on 𝜕𝑡𝛺 ×  , (5)

where �̂� and �̂� are the prescribed boundary displacement and boundary
traction, respectively, and 𝒏 is the unit outward normal vector. Finally,
the strong form of the problem can be stated as follows: Find the
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Fig. 2. MPM update procedure. After Zhao and Choo (2020) and Zhao et al. (2022b).
isplacement field 𝒖 that satisfies Eq. (3), subjected to the initial and
oundary conditions above.

Following the standard procedure, the variational version of the
overning equation (3) can be formulated as

𝛺
𝜼 ⋅ 𝜌𝒂 d𝑣 = −∫𝛺

∇s 𝜼 ∶ 𝝈 d𝑣 + ∫𝛺
𝜼 ⋅ 𝜌𝒈 d𝑣 + ∫𝜕𝑡𝛺

𝜼 ⋅ �̂� d𝑎, (6)

where 𝜼 is the variation of 𝒖, ∇s is the symmetric gradient operator
evaluated in the current configuration, and d𝑎 is the differential area.

2.2. MPM discretization

To begin MPM discretization, let us introduce a set of particles
(material points) that fill in the initial domain and a background
grid that accommodates the particles. In each time step, the MPM
updates the states (e.g. positions, velocities, and stresses) of the particles
through the four-stage procedure illustrated in Fig. 2. We provide
a brief description of each step in the sequel. In what follows, we
distinguish between quantities related to particles and background
grid using subscripts (◦)𝑝 and (◦)𝑖, respectively. Also, we distinguish
between quantities at time 𝑡𝑛 and 𝑡𝑛+1 using superscripts (◦)𝑛 and (◦)𝑛+1,
respectively.

Particle-to-grid transfer. The first stage in the MPM procedure, called
the particle-to-grid (P2G) transfer, is to project the quantities of the par-
ticles to the background grid. Specifically, the P2G transfer is conducted
as

𝑚𝑖 =
∑

𝑝
𝑤𝑖(𝒙𝑛𝑝)𝑚𝑝, (7)

𝑚𝑖𝒗𝑛𝑖 =
∑

𝑝
𝑤𝑖(𝒙𝑛𝑝)𝑚𝑝𝒗

𝑛
𝑝, (8)

where 𝑚𝑖 is the nodal mass, 𝑚𝑝 is the particle mass, 𝒗𝑖 is the nodal
velocity, and 𝒗𝑝 is the particle velocity. Also, 𝑤𝑖(𝒙𝑛𝑝) is the interpolation
weight associated with node 𝑖 and particle 𝑝 at position 𝒙𝑝, and ∑

𝑝
denotes the summation over particles supported by 𝑤𝑖(𝒙𝑛𝑝). It is noted
that a variety of choices are available for the interpolation functions,
𝑤𝑖(𝒙𝑛𝑝). Examples range from the linear shape functions in the standard
finite elements (used in the original MPM) to more advanced func-
tions that are designed to avoid cell-crossing errors in MPM solutions
(e.g. Bardenhagen and Kober, 2004; Gan et al., 2018; Steffen et al.,
2008). In this work, we adopt quadratic B-splines which are free of
cell-crossing errors (Steffen et al., 2008) and gaining popularity in the
MPM community (e.g. Stomakhin et al., 2013; Gaume et al., 2018;
Moutsanidis et al., 2020; Yamaguchi et al., 2021). Note, however, that
the proposed approach should work equally well with other types of
MPM interpolation functions.

Grid update. The second stage is to update the nodal quantities. As
standard, we use the explicit Euler method to integrate the governing
equation and update the nodal velocity as

𝑚𝑖𝒗𝑛+1𝑖 = 𝑚𝑖𝒗𝑛𝑖 + 𝛥𝑡𝒇
𝑛
𝑖 , (9)

where 𝛥𝑡 ∶= 𝑡𝑛+1 − 𝑡𝑛 is the time interval, and 𝒇 𝑛𝑖 is the sum of internal
3

and external force vectors.
Grid-to-particle transfer. The third stage, called the grid-to-particle
(G2P) transfer, is to map back the nodal velocities to the particles.
The same interpolation functions used in the P2G transfer are used for
this purpose. It is noted that there are two schemes for the velocity
transfer, namely, the fluid-implicit-particle (FLIP) method (Brackbill
and Ruppel, 1986) and the particle-in-cell method (Harlow, 1964). The
FLIP scheme involves much less numerical dissipation than the PIC
scheme, but it is also less stable numerically. As such, it is common
to blend the two schemes as

𝒗𝑛+1𝑝 = 𝜂

(

𝒗𝑛𝑝 +
∑

𝑖
𝑤𝑖(𝒙𝑛𝑝)(𝒗

𝑛+1
𝑖 − 𝒗𝑛𝑖 )

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
FLIP

+(1 − 𝜂)

(

∑

𝑖
𝑤𝑖(𝒙𝑛𝑝)𝒗

𝑛+1
𝑖

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
PIC

, (10)

where 𝜂 ∈ [0, 1] is the FLIP/PIC blending ratio. Unless specified
otherwise, we set 𝜂 = 1. We then update other quantities, such as the
deformation gradient, stress, volume, and the position, of the individual
particles.

Grid reset and repeat. The fourth and last stage is to reset the back-
ground grid and proceed to the next time step. The above-described
four stages are repeated in the next time step.

3. Level set approach for rigid objects

In this section, we first describe how we make use of the level set
method to delineate the boundary of a rigid object. Then we explain
how to update the kinematics of the object when it is movable.

3.1. Level set representation of rigid object geometry

The key idea of the level set method is to represent a surface
implicitly using a signed distance function. As depicted in Fig. 3a, the
signed distance function gives rise to contour lines (or level curves)
that are negative inside the surface and positive outside the surface.
Then, based on the level set value and its gradient, we can calculate
the distance from the surface and the direction normal to the surface.
It is noted that for a rigid object whose shape is fixed, the level set
values do not need to be updated after they are initialized.

To calculate the level set value at any point of interest, we have to
discretize the level set values on a grid. For this purpose, we use an
equi-spaced Cartesian grid, as illustrated in Fig. 3b. Note that here an
equi-spaced grid is chosen for the sake of easy implementation, and
other types of grids such as a hierarchical grid can also be used if
desired. After the discretization, as shown in Fig. 3c, we can interpolate
the discretized level set values to calculate the level set value at every
point in the domain. Technically speaking, the interpolation can be
done by any kind of interpolation functions. For consistency with the
MPM discretization, here we adopt the same type of interpolation
function used in the MPM (specifically, quadratic B-splines in this work)
to interpolate the level set values as well. Also, the discretization of

the level set values requires us to discretize the surface of the rigid
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Fig. 3. Illustration of the signed distance and the level set.
object as well. So we discretize the object’s surface with a lower-
dimensional mesh composed of triangular elements, and calculate the
level set values on the surface mesh using a standard point-to-triangle
algorithm (Jones, 1995).

Importantly, the grid spacing of the level set discretization should
be selected properly to balance accuracy and efficiency in computation.
For accuracy, it is recommended that the spacing of the level set grid,
ℎ𝐿𝑆 , is not greater than the spacing of the MPM grid or that of the
surface mesh of the rigid object. (This point will be demonstrated later
through a numerical example.) Meanwhile, ℎ𝐿𝑆 should not be too small
for computational efficiency. As such, by default, we set ℎ𝐿𝑆 to be equal
to the smaller value between the spacing of the MPM grid and that of
the surface mesh.

Having discretized the level set values, we can calculate the level
set value at point 𝒙, 𝜙(𝒙), and its gradient, ∇𝜙(𝒙), as

𝜙(𝒙) =
∑

𝑖
𝑤𝑖(𝒙)𝜙𝑖, (11)

∇𝜙(𝒙) =
∑

𝑖
∇𝑤𝑖(𝒙)𝜙𝑖, (12)

where 𝜙𝑖 is the discretized level set value at node 𝑖, and ∑

𝑖 is the
summation over the discretized level set grids supported by 𝑤𝑖(𝒙). The
level set value corresponds to the nearest distance from point 𝒙 to
the surface of the object. Also, the unit vector outward normal to the
surface can be calculated as

𝒏𝐿𝑆 =
∇𝜙(𝒙)

‖∇𝜙(𝒙)‖
(13)

These two quantities, the distance and the surface normal vector,
will be used in the coupling with MPM discretization, which will be
described in the next section.

3.2. Kinematics of rigid object

When the rigid object of interest is movable, its kinematics should
be updated based on standard rigid body dynamics, like the DEM
(e.g. Lim and Andrade, 2014). In what follows, we describe how to in-
tegrate the equations of motion of a rigid object. We shall use subscript
(◦)𝑟 to denote quantities related to the rigid object, and superscript
(◦)𝑛−1, (◦)𝑛−1∕2, (◦)𝑛, (◦)𝑛+1∕2, and (◦)𝑛+1 to denote quantities at times
𝑡𝑛−1, 𝑡𝑛−1∕2, 𝑡𝑛, 𝑡𝑛+1∕2, and 𝑡𝑛+1, respectively.

The motion of a rigid object is comprised of two components: trans-
lation and rotation. The translational motion is governed by Newton’s
second law, expressed as

𝑚𝑟𝒂𝑟 = 𝒇 𝑟, (14)

where 𝑚𝑟 is the mass of the rigid object, 𝒂𝑟 is the linear acceleration,
and 𝒇 𝑟 is the reaction force on the rigid object. In the present work, the
reaction force will be calculated based on the interaction of the object
with the MPM domain, which will be explained in the next section. The
4

rotation of the rigid object is governed by Euler’s rotation equations,
given by

𝑰 𝑟 ⋅ 𝜶𝑟 + 𝝎𝑟 × (𝑰 𝑟 ⋅ 𝝎𝑟) = 𝑴 𝑟, (15)

where 𝑰 𝑟 is the inertia matrix, 𝜶𝑟 is the angular acceleration, 𝝎𝑟 is the
angular velocity, and 𝑴 𝑟 is the moment. For convenience, Eq. (15) is
usually calculated in the principal inertia axes as

𝐼𝑟,1𝛼𝑟,1 =𝑀𝑟,1 + 𝜔𝑟,2𝜔𝑟,3(𝐼𝑟,2 − 𝐼𝑟,3), (16)

𝐼𝑟,2𝛼𝑟,2 =𝑀𝑟,2 + 𝜔𝑟,3𝜔𝑟,1(𝐼𝑟,3 − 𝐼𝑟,1), (17)

𝐼𝑟,3𝛼𝑟,3 =𝑀𝑟,3 + 𝜔𝑟,1𝜔𝑟,2(𝐼𝑟,1 − 𝐼𝑟,2), (18)

where 𝐼𝑟,𝑖 represents the 𝑖th principal moments of inertia, 𝛼𝑟,𝑖 and 𝜔𝑟,𝑖
are the 𝑖th component of 𝜶𝑟 and 𝝎𝑟, respectively, and 𝑀𝑟,𝑖 is the 𝑖th
component of 𝑴 𝑟.

To update the translational components of motion – the linear
velocity and position – we use the central difference time integration
scheme as in the standard DEM (Cundall and Strack, 1979). The linear
velocity and position at time step 𝑛 are updated as

𝒗𝑛+1∕2𝑟 = 𝒗𝑛−1∕2𝑟 + 𝛥𝑡
𝑚𝑟

𝒇 𝑛𝑟 , (19)

𝒙𝑛+1𝑟 = 𝒙𝑛𝑟 + 𝛥𝑡𝒗
𝑛+1∕2
𝑟 . (20)

The update of the rotational motion is more challenging because
Euler’s rotation equations (16)–(18) have nonlinear terms. Here we
use the predictor–corrector algorithm suggested by Walton and Braun
(1993), which can be summarized as follows:

1. Estimate the angular velocities at time step 𝑛 based on the
previous values:

𝜔𝑛,𝐸𝑆𝑟,𝑖 = 𝜔𝑛−1∕2𝑟,𝑖 + 1
2
𝛼𝑛−1𝑟,𝑖 𝛥𝑡. (21)

2. Predict the angular accelerations at time step 𝑛 based on the
estimated angular velocities:

𝛼𝑛,𝑃𝑅𝑟,1 =
[

𝑀𝑛
𝑟,1 + 𝜔

𝑛,𝐸𝑆
𝑟,1 𝜔𝑛,𝐸𝑆𝑟,3 (𝐼𝑟,2 − 𝐼𝑟,3)

]

∕𝐼𝑟,1, (22)

𝛼𝑛,𝑃𝑅𝑟,2 =
[

𝑀𝑛
𝑟,2 + 𝜔

𝑛,𝐸𝑆
𝑟,3 𝜔𝑛,𝐸𝑆𝑟,1 (𝐼𝑟,3 − 𝐼𝑟,1)

]

∕𝐼𝑟,2, (23)

𝛼𝑛,𝑃𝑅𝑟,3 =
[

𝑀𝑛
𝑟,3 + 𝜔

𝑛,𝐸𝑆
𝑟,1 𝜔𝑛,𝐸𝑆𝑟,2 (𝐼𝑟,1 − 𝐼𝑟,2)

]

∕𝐼𝑟,3. (24)

3. Predict the angular velocities at time step 𝑛 using the predicted
angular accelerations:

𝜔𝑛,𝑃𝑅𝑟,𝑖 = 𝜔𝑛−1∕2𝑟,𝑖 + 1
2
𝛼𝑛,𝑃𝑅𝑟,𝑖 𝛥𝑡. (25)

4. Correct the angular accelerations based on the predicted angular
velocities:

𝛼𝑛,𝐶𝑅 =
[

𝑀𝑛 + 𝜔𝑛,𝑃𝑅𝜔𝑛,𝑃𝑅(𝐼 − 𝐼 )
]

∕𝐼 , (26)
𝑟,1 𝑟,1 𝑟,2 𝑟,3 𝑟,2 𝑟,3 𝑟,1
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𝛼𝑛,𝐶𝑅𝑟,2 =
[

𝑀𝑛
𝑟,2 + 𝜔

𝑛,𝑃𝑅
𝑟,3 𝜔𝑛,𝑃𝑅𝑟,1 (𝐼𝑟,3 − 𝐼𝑟,1)

]

∕𝐼𝑟,2, (27)

𝛼𝑛,𝐶𝑅𝑟,3 =
[

𝑀𝑛
𝑟,3 + 𝜔

𝑛,𝑃𝑅
𝑟,1 𝜔𝑛,𝑃𝑅𝑟,2 (𝐼𝑟,1 − 𝐼𝑟,2)

]

∕𝐼𝑟,3. (28)

5. Update the angular velocities at time step 𝑛 + 1∕2 using the
corrected angular accelerations:

𝜔𝑛+1∕2𝑟,𝑖 = 𝜔𝑛−1∕2𝑟,𝑖 + 𝛼𝑛,𝐶𝑅𝑟,𝑖 𝛥𝑡. (29)

fter updating the angular velocities, we can update the rotation of
he rigid object using the quaternion approach that allows one to avoid
ingularities in the Euler angle method (Evans and Murad, 1977). The
pdate procedure in Walton and Braun (1993) is described in the
ollowing:

1. Calculate the coefficient matrix 𝑩𝑟, which is required for updat-
ing the quaternions:

𝑩𝑟 =

⎛

⎜

⎜

⎜

⎜

⎝

1 −𝛽3 𝛽1 𝛽2
𝛽3 1 𝛽2 −𝛽1
−𝛽1 −𝛽2 1 −𝛽3
−𝛽2 𝛽1 𝛽3 1

⎞

⎟

⎟

⎟

⎟

⎠

, (30)

where 𝛽𝑖 =
𝛥𝑡
4
𝜔𝑛+1∕2𝑟,𝑖 .

2. Update the quaternions:

𝒒𝑛+1𝑟 = 𝑩−1
𝑟 ⋅ 𝑩𝑇

𝑟 ⋅ 𝒒𝑛𝑟 , (31)

where 𝒒𝑛+1𝑟 and 𝒒𝑛𝑟 represent the quaternions of the rigid object
at times 𝑡𝑛+1 and 𝑡𝑛, respectively.

3. Calculate the updated rotation matrix 𝑨𝑛+1
𝑟 , which represents the

rotation from the initial state to the current state at time step
𝑛 + 1, as

𝑨𝑛+1
𝑟 =

⎛

⎜

⎜

⎝

−𝑞21 + 𝑞
2
2 − 𝑞

2
3 + 𝑞

2
4 −2(𝑞1𝑞2 − 𝑞3𝑞4) 2(𝑞2𝑞3 + 𝑞1𝑞4)

−2(𝑞1𝑞2 + 𝑞3𝑞4) 𝑞21 − 𝑞
2
2 − 𝑞

2
3 + 𝑞

2
4 −2(𝑞1𝑞3 − 𝑞2𝑞4)

2(𝑞2𝑞3 − 𝑞1𝑞4) −2(𝑞1𝑞3 + 𝑞2𝑞4) −𝑞21 − 𝑞
2
2 + 𝑞

2
3 + 𝑞

2
4

⎞

⎟

⎟

⎠

,

(32)

where 𝑞𝑖 represents the 𝑖th component of 𝒒𝑛+1𝑟 .

After updating the position and rotation matrix with Eqs. (20) and (32),
we can determine the new configuration of the rigid object and proceed
to the next time step.

4. Coupling material point method with level set object

In this section, we develop an algorithm to couple material points
in the MPM domain with discrete objects represented by the level set
method.

4.1. Coupling approach

To couple a material point and a rigid object, we build on the
approach recently developed in Jiang et al. (2022). When the distance
between a material point and a rigid object is lower than a certain
value, the coupling force between the material point and the object
is calculated based on a contact mechanics model. As for the specific
contact model, here we adopt the barrier method (Li et al., 2020;
Zhao et al., 2022a), which can strictly prevent inter-penetration in a
relatively simple manner.

Specifically, we calculate the coupling force based on the nearest
distance 𝑑𝑛𝐿𝑆 and the surface normal direction 𝒏𝑛𝐿𝑆 computed with
the level set method in Eqs. (11) and (13), respectively. The normal
coupling force, 𝒇 𝑛𝑟𝑝,𝑁 , is calculated as

𝑛 𝑛 𝑛
5

𝒇 𝑟𝑝,𝑁 = 𝑓𝑟𝑝,𝑁𝒏𝐿𝑆 , (33)
𝑓 𝑛𝑟𝑝,𝑁 =

⎧

⎪

⎨

⎪

⎩

𝜅(𝑑𝑛𝐿𝑆 − 𝑟𝑝)
[

2 ln
(𝑑𝑛𝐿𝑆
𝑟𝑝

)

−
𝑟𝑝
𝑑𝑛𝐿𝑆

+ 1
]

if 0 < 𝑑𝑛𝐿𝑆 < 𝑟𝑝,

0 if 𝑑𝑛𝐿𝑆 ≥ 𝑟𝑝,
(34)

where 𝑓 𝑛𝑟𝑝,𝑁 is the magnitude of the normal coupling force, 𝜅 is a
parameter controlling the stiffness of the barrier model, and 𝑟𝑝 is the
maximum distance where the coupling force is nonzero. As in Jiang
et al. (2022), we assume that each material point has a spherical
volume and determine 𝑟𝑝 as the radius of the volume. Alternatively, one
may assume that the material point’s volume is cubic and calculate 𝑟𝑝
accordingly. From our experience, however, the result is not sensitive
to the shape of the material point volume.

Next, we calculate the tangential coupling force, 𝒇 𝑛𝑟𝑝,𝑇 , considering
friction between the material point and the rigid object. To incorporate
stick–slip transition behavior, we utilize a smoothed version of the
Coulomb friction law (Li et al., 2020; Zhao et al., 2022a) and calculate
𝒇 𝑛𝑟𝑝,𝑇 as

𝒇 𝑛𝑟𝑝,𝑇 = 𝑚(𝑢𝑛𝑇 )𝜇𝑓
𝑛
𝑟𝑝,𝑛𝒎

𝑛, (35)

where 𝑚(𝑢𝑛𝑇 ) ∈ [0, 1] is a friction smoothing function that continuously
varies with the accumulative slip magnitude 𝑢𝑛𝑇 , 𝜇 is the friction co-
efficient, and 𝒎𝑛 is the unit vector pointing toward the slip direction.
Specifically, 𝑚(𝑢𝑛𝑇 ) is given by

𝑚(𝑢𝑛𝑇 ) =

⎧

⎪

⎨

⎪

⎩

−
𝑢𝑛𝑇

2

𝑠2𝑝
+

2|𝑢𝑛𝑇 |
𝑠𝑝

if |𝑢𝑛𝑇 | < 𝑠𝑝,

1 if |𝑢𝑛𝑇 | ≥ 𝑠𝑝,
(36)

here 𝑠𝑝 is a threshold parameter controlling the slip magnitude at
hich the slip condition is met. The accumulative slip magnitude, 𝑢𝑛𝑇 ,

s calculated as
𝑛
𝑇 = 𝑢𝑛−1𝑇 + 𝛥𝑡(𝒗𝑛𝑝 − 𝒗𝑛−1∕2𝑟 − 𝝎𝑛−1∕2𝑟 × 𝒓𝑛𝑟𝑝) ⋅𝒎

𝑛, (37)

nd 𝒎𝑛 is given by

𝑛 =
𝛥𝑡(𝒗𝑛𝑝 − 𝒗𝑛−1∕2𝑟 − 𝝎𝑛−1∕2𝑟 × 𝒓𝑛𝑟𝑝) − 𝛥𝑡

[

(𝒗𝑛𝑝 − 𝒗𝑛−1∕2𝑟 − 𝝎𝑛−1∕2𝑟 × 𝒓𝑛𝑟𝑝) ⋅ 𝒏
𝑛
𝐿𝑆

]

𝒏𝑛𝐿𝑆
‖

‖

‖

‖

𝛥𝑡(𝒗𝑛𝑝 − 𝒗𝑛−1∕2𝑟 − 𝝎𝑛−1∕2𝑟 × 𝒓𝑛𝑟𝑝) − 𝛥𝑡
[

(𝒗𝑛𝑝 − 𝒗𝑛−1∕2𝑟 − 𝝎𝑛−1∕2𝑟 × 𝒓𝑛𝑟𝑝) ⋅ 𝒏
𝑛
𝐿𝑆

]

𝒏𝑛𝐿𝑆
‖

‖

‖

‖

,

(38)

with 𝒓𝑛𝑟𝑝 denoting the vector from the center of mass of the rigid object
to particle 𝑝. Finally, we get the total coupling force by adding the
normal and tangential forces as

𝒇 𝑛𝑟𝑝 = 𝒇 𝑛𝑟𝑝,𝑁 + 𝒇 𝑛𝑟𝑝,𝑇 . (39)

The coupling force alters the MPM formulation (explained in Sec-
tion 2) and the rigid body dynamics of the level set object (explained in
Section 3) as follows. The nodal momentum update, Eq. (9), is modified
as

𝑚𝑖𝒗𝑛+1𝑖 = 𝑚𝑖𝒗𝑛𝑖 + 𝛥𝑡(𝒇
𝑛
𝑖 + 𝒇 𝑛𝑟𝑝,𝑖), (40)

where 𝒇 𝑛𝑟𝑝,𝑖 =
∑

𝑝 𝒇
𝑛
𝑟𝑝𝑤𝑖(𝒙

𝑛
𝑝) is the nodal coupling force. Next, let us

denote the coupling force imposed on the rigid object by 𝒇 𝑛𝑝𝑟, which
should be equal to −𝒇 𝑛𝑟𝑝 according to Newton’s third law. For the
rigid object at time step 𝑛, the total reaction force 𝒇 𝑛𝑟 and the total
moment 𝑴𝑛

𝑟 , which appear on the right hand sides of Eqs. (14) and
(15), respectively, are calculated as

𝒇 𝑛𝑟 =
∑

𝑝
𝒇 𝑛𝑝𝑟 =

∑

𝑝
−𝒇 𝑛𝑟𝑝, (41)

𝑴𝑛
𝑟 =

∑

𝑝
𝒇 𝑛𝑟𝑝 × 𝒓𝑛𝑟𝑝. (42)

4.2. Implementation

The implementation of the above-described approach is straightfor-

ward, except for one thing: the calculation of the level set values when
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the discrete object is moving. This is because the level set values of
a moving object evolve in the global coordinate system. A general
approach for updating level set values is to solve a Hamilton–Jacobi
equation numerically, but its computational cost is non-trivial.

When the object of interest is rigid, one can update level set val-
ues during translation and rotation by introducing a local coordinate
system attached to the rigid object (Kawamoto et al., 2016), which we
shall refer to as the level set coordinate system. The origin of the level
set coordinate system is set such that all discretized level set values are
at the first octant of the coordinate system and thus the interpolation
functions can be implemented straightforwardly. Also, the level set
coordinate system has its axes aligned with the principal axes of the
object. The use of the level set coordinate system greatly simplifies
the level set calculation in two ways. First, as the level set coordinate
system moves together with the rigid object, it eliminates the need to
track translation and rotation separately. Second, because the object is
rigid, its local surface distance remains constant. As such, the level set
values generated in the level set coordinate system remain unchanged
during the movement of the object. Thus the level set coordinate
system allows us to calculate the level set values in a highly efficient
manner. It is noted that the robustness of this calculation has been well
demonstrated in level set DEM simulations, see, e.g. Kawamoto et al.
(2016, 2018) and Li et al. (2019).

Algorithm 1 presents a modified MPM procedure for updating ma-
terial points coupled with level set objects. This procedure extends the
standard MPM procedure described in Section 2 to incorporate coupling
with rigid objects represented by the level set method.

5. Numerical examples

In this section, we evaluate the proposed approach through four
examples of varied complexity. The first and second examples are
intended to verify the simulation approach. For this reason, these two
examples mainly consider objects with simple shapes that can also
be described precisely in an analytical manner. The third and fourth
examples are designed to demonstrate the performance of the approach
for handling discrete objects with complex geometry. To this end,
we use two geometrically complex objects in real-world applications,
namely, a wheel of a vehicle and a basal terrain. Note that the rigid
object (wheel) in the third example is not only geometrically complex
but also subjected to dramatic translation and rotation.

For the numerical examples in this section, the level set values of the
discrete objects are generated using the pysdf library (Yu, 2020). The
overall MPM algorithm is implemented with the Taichi library (Hu
et al., 2019).

5.1. Rolling of a sphere on an inclined plane

As our first example, we consider the problem of a sphere rolling
down an inclined rigid plane, which has been used to verify contact
algorithms in the MPM (e.g. Bardenhagen et al., 2001; Huang et al.,
2011). Here we use the example to verify the contact algorithm that
couples the MPM domain and the level set object in a simple setting.
Fig. 4 depicts the geometry and boundary conditions of the problem.

When both the sphere and the plane are rigid, the displacement of
the sphere permits an analytical solution (Huang et al., 2011). Thus,
to emulate a rigid sphere, we treat the sphere as a purely elastic
material with quite high stiffness, say, 𝐸 = 420 MPa. The other elasticity
parameter, Poisson’s ratio, is set as 𝜈 = 0.4. The density of the sphere
is assigned as 𝜌 = 1.0 t/m3. We use 17,160 material points to discretize
the sphere and employ a background grid comprised of 0.2-m-long
cubic elements. We calculate the time increment as 𝛥𝑡 = 0.3(ℎ∕𝑐) =
6.325×10−5 s, where ℎ is the element size of the MPM grid and 𝑐 is the
6

-wave velocity. We discretize the level set values on a Cartesian grid o
Algorithm 1 Procedure for updating material points coupled with level
set objects.
1: Contact detection and coupling force calculation:
2: Calculate the positions of particles (material points), 𝒙𝑛𝑝,𝐿𝑆 , in

the level set coordinate system.
3: Compute the distances from the particles to the rigid objects,
𝑑𝑛𝐿𝑆 , and the surface normal vectors, 𝒏𝑛𝐿𝑆 :

𝑑𝑛𝐿𝑆 =
∑

𝑖
𝑤𝑖(𝒙𝑛𝑝,𝐿𝑆 )𝜙𝑖,

𝒏𝑛𝐿𝑆 =

∑

𝑖 ∇𝑤𝑖(𝒙𝑛𝑝,𝐿𝑆 )𝜙𝑖
‖

∑

𝑖 ∇𝑤𝑖(𝒙𝑛𝑝,𝐿𝑆 )𝜙𝑖‖
.

4: If 𝑑𝑛𝐿𝑆 < 𝑟𝑝, calculate the coupling forces 𝒇 𝑛𝑟𝑝,𝐿𝑆 based on 𝑑𝑛𝐿𝑆
and 𝒏𝑛𝐿𝑆 , as described in Eqs. (33)–(39)

5: Calculate the coupling forces in the global coordinate system
through the rotational transformation:

𝒇 𝑛𝑟𝑝 = 𝑨𝑛𝒇 𝑛𝑟𝑝,𝐿𝑆 .

6: Particle-to-grid transfer:
7: Transfer the masses and momenta of the particles to the

background grid (standard particle-to-grid transfer).
8: Transfer the coupling forces of the particles to the background

grid:

𝒇 𝑛𝑟𝑝,𝑖 =
∑

𝑝
𝒇 𝑛𝑟𝑝𝑤𝑖(𝒙

𝑛
𝑝).

9: Grid update:
0: Update the nodal momenta:

𝑚𝑖𝒗𝑛+1𝑖 = 𝑚𝑖𝒗𝑛𝑖 + 𝛥𝑡(𝒇
𝑛
𝑖 + 𝒇 𝑛𝑟𝑝,𝑖).

1: Grid-to-particle transfer:
2: Transfer the updated nodal velocities to the particles (standard

grid-to-particle transfer).
3: Update the kinematics of rigid objects:
4: Calculate the coupling forces and the moments imposed on the

rigid objects:

𝒇 𝑛𝑟 =
∑

𝑝
−𝒇 𝑛𝑟𝑝,

𝑴𝑛
𝑟 =

∑

𝑝
𝒇 𝑛𝑟𝑝 × 𝒓𝑛𝑟𝑝.

5: Update the kinematics of the rigid objects through standard
rigid body dynamics, as described in Section 3.2.

with the spacing of ℎ𝐿𝑆 = 0.2 m. To verify the approach under varied
friction conditions, we consider three different friction coefficients,
namely, 𝜇 = 0.0, 0.2, and 0.4, for the interface between the sphere
and the plane.

Fig. 5 shows the displacement of the center-of-mass of the sphere
in the 𝑥 direction, along with the analytical solutions. Note that the
analytical solutions are different depending on the contact condition:
Under the slip condition (𝜇 = 0.0 and 0.2), the solution is 𝑢𝑥 =
1∕2 𝑔𝑡2(sin 𝜃 − 𝜇 cos 𝜃), and under the stick condition (𝜇 = 0.4), 𝑢𝑥 =
∕14 𝑔𝑡2 sin 𝜃. Irrespective of this difference, the numerical solutions
lways agree well with the analytical solutions. This agreement verifies
he algorithm that couples the MPM domain and the rigid object
epresented by the level set method.

.2. Impact of granular flow on columns

In our second example, we further verify the proposed approach
nder more complex conditions. To this end, we simulate the impact

f granular flow on columns, which has relevance to debris flows and
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Fig. 4. Rolling of a sphere on an inclined plane: problem geometry and boundary
onditions.

Fig. 5. Rolling of a sphere on an inclined plane: the 𝑥-displacement of the
enter-of-mass of the sphere.

heir mitigation (e.g. Choi et al., 2014; Yang et al., 2021; Liang et al.,
023; Ng et al., 2023). The geometry and boundary conditions of this
roblem are illustrated in Fig. 6. It is noted that the bottom boundary
s a frictional interface where the frictional coefficient is 0.1. As shown
n the figure, we consider two types of baffle shapes, namely, pillar-
haped columns and star-shaped columns. For simplicity, the columns
re considered made of quite smooth materials (e.g. steel) such that its
riction coefficient with the granular flow can be set as zero.

The constitutive behavior of the granular material is considered
lastoplastic. The elastic behavior is modeled by Hencky elasticity, with
Young’s modulus of 𝐸 = 10 MPa and a Poisson’s ratio of 𝜈 = 0.3.

or the plastic behavior, we use the 𝜇(𝐼) rheology (Jop et al., 2006),
hich is a rate-dependent rheology model widely used for dry granular

lows. The model parameters are adopted from Jiang et al. (2022)
here the same constitutive model is used to simulate granular impact
xperiments with the MPM. The 𝜇(𝐼) rheology parameters adopted are
s follows: the lowest friction angle 𝜙min = 30o, the highest friction
ngle 𝜙max = 34o, the reference inertia parameter 𝐼0 = 0.278, and the

mean particle size 𝑑 = 0.25 mm. The initial density of the granular
3

7

aterial is set as 𝜌 = 2.0 t/m .
For MPM discretization, we introduce a background grid comprised
of 0.01-m-long cubic elements and initialize each element in the granu-
lar domain with 8 material points. This discretization results in a total
of 64,000 material points. The time increment is again calculated as
𝛥𝑡 = 0.3(ℎ∕𝑐), which gives 𝛥𝑡 = 3.657 × 10−5 s. To avoid volumetric
locking that may emanate from the isochoric deformation of the 𝜇(𝐼)
rheology, we apply the �̄� approach proposed by Zhao et al. (2022b).

The main focus of this example is on how the grid spacing of
the level set discretization, ℎ𝐿𝑆 , affects the numerical solutions. For
this purpose, we repeat each case with three choices of ℎ𝐿𝑆 : ℎ𝐿𝑆 =
0.5min(ℎsurface, ℎ), ℎ𝐿𝑆 = min(ℎsurface, ℎ), and ℎ𝐿𝑆 = max(ℎsurface, ℎ),
where ℎsurface refers to the spacing of the grid for discretizing the sur-
faces of the rigid objects (the columns herein). It would be worthwhile
to note that the choice ℎ𝐿𝑆 = 2max(ℎsurface, ℎ), which is larger than the
three choices above, has been found to be numerically unstable.

Fig. 7 presents the final configurations of the granular flows ob-
tained with the three different values of level set grid spacings, for
pillar-shaped columns. It can be seen that the three numerical solutions
are more or less the same, and this is not surprising because the
columns’ shape is very simple. Also, while not presented for brevity, all
these results are virtually identical to the numerical solution obtained
by representing the columns analytically as in the existing MP-DEM
of Jiang et al. (2022). So it can be confirmed that when the object
of interest is geometrically simple, the proposed approach is not very
sensitive to ℎ𝐿𝑆 as long as it is small enough to provide numerical
stability.

Fig. 8 shows how the results become different when the columns
become star-shaped. As can be seen, the results obtained with ℎ𝐿𝑆 =
0.5min(ℎsurface, ℎ) and ℎ𝐿𝑆 = min(ℎsurface, ℎ) are nearly identical. Such
close similarity indicates that the choice of ℎ𝐿𝑆 = min(ℎsurface, ℎ)
can provide quite accurate results even when the object has complex
geometry with sharp corners. However, the result obtained with ℎ𝐿𝑆 =
max(ℎsurface, ℎ) exhibits non-trivial difference from the other two results,
in terms of the flow morphology behind the baffles. This difference
suggests that the choice of ℎ𝐿𝑆 = max(ℎsurface, ℎ) may be too large for
objects with complex shapes.

In Fig. 9 we also plot how the reaction forces on the center columns
are affected by the level set grid spacing, for the cases of pillar-shaped
columns and star-shaped columns. Being consistent with the conclusion
drawn from the flow morphology, the reaction force results indicate
that (i) when the object geometry is simple (pillar), the results are
not so sensitive to the value of ℎ𝐿𝑆 , and that (ii) when the object
geometry is rather complex (star), ℎ𝐿𝑆 should be small enough and
ℎ𝐿𝑆 = min(ℎsurface, ℎ) appears to give sufficiently accurate results that
are similar to those obtained by a smaller value of ℎ𝐿𝑆 . The latter point
can be quantitatively confirmed by the maximum reaction forces in the
figure (circles therein): those obtained with ℎ𝐿𝑆 = 0.5min(ℎsurface, ℎ)
and ℎ𝐿𝑆 = min(ℎsurface, ℎ) are very close to each other. In light of
these observations, we shall use ℎ𝐿𝑆 = min(ℎsurface, ℎ) in the following
examples.

5.3. Soil–wheel interaction

Our third example simulates the interaction between a wheel of a
real-world vehicle and a soil ground, which is the main topic in the
field of terramechanics. The problem setup is depicted in Fig. 10. As
shown, the wheel features highly complex geometry which cannot be
handled easily by particle-based or mesh-based approaches.

We adopt the wheel geometry from a small-scale wheel model
provided by NASA (2020a), scaling it to be the same as that of the real
wheel described in NASA (2020b). The wheel moves with an angular
velocity, 𝜔, prescribed in the rolling direction. To demonstrate how the
ground behaves differently by the wheel velocity, we consider three
different angular velocities: 𝜔 = 1, 2, and 4 rad/s. To emphasize the
importance of the wheel geometry in soil–wheel interaction, we set the

friction coefficient on the wheel surface as zero (𝜇 = 0), such that all
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Fig. 6. Impact of granular flow on columns: problem geometry and boundary conditions.

Fig. 7. Impact of granular flow on pillar-shaped columns: final configurations of the granular flows obtained with three different values of level set grid spacings. The particles
are colored by the displacement magnitudes.
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Fig. 8. Impact of granular flow on star-shaped columns: final configurations of the granular flows obtained with three different values of level set grid spacings. The particles are
colored by the displacement magnitudes.

Fig. 9. Impact of granular flow on columns: reaction forces on the center columns obtained with three different values of level set grid spacings. Circles denote the maximum
reaction forces.

Fig. 10. Soil-wheel interaction: problem geometry.
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Fig. 11. Soil-wheel interaction: simulation snapshots with 𝜔 = 1 rad/s. The particles are colored by their vertical displacements.
Fig. 12. Soil-wheel interaction: simulation snapshots with 𝜔 = 2 rad/s. The particles are colored by their vertical displacements.
the frictional behavior at the soil–wheel interface is attributed to the
non-smooth topology of the wheel surface. In other words, if the wheel
were a smooth cylinder, it would not move forward despite the given
angular velocity. The weight of the wheel is set as 0.171 t.

The soil ground is modeled by a combination of Hencky elasticity
and Drucker–Prager plasticity. The elasticity parameter assigned are a
Young’s modulus of 𝐸 = 10 MPa and a Poisson’s ratio of 𝜈 = 0.3. As for
the plastic parameters, a friction angle of 𝜙 = 30◦ and a dilatancy angle
of 𝜓 = 5◦ are assigned. The initial density of the soil is set as 𝜌 = 2.0
t/m3.

We discretize the problem as follows. Introducing a background
grid comprised of 0.04-m-long cubes, we initialize each element in the
ground with 8 material points, which results in a total of 192,000 ma-
terial points. We again calculate the time increment as 𝛥𝑡 = 0.3(ℎ∕𝑐) =
1.462 × 10−4 s. We discretize the level set on a grid with ℎ𝐿𝑆 =
min (ℎ, ℎsurface) = 0.008 m, which equals to ℎsurface in the mesh scaled
from NASA (2020a).

Figs. 11–13 illustrate the simulation results in the three cases of
angular velocities. It can be seen that the wheel moves forward through
reactions from the ground. As explained earlier, the wheel movement is
possible due to the non-smooth geometry of the wheel surface, because
the frictional coefficient is zero in this problem. Therefore the results
highlight the critical role of the wheel surface geometry in soil–wheel
interactions. Furthermore, the ground responds very differently to the
wheel velocity, and it undergoes larger deformations as the wheel
velocity becomes higher.

Fig. 14 presents how the wheel displacements evolve over time in
the three cases. Also shown in the figure are the translational velocities
of circular wheels rolling on a flat surface under a non-slip condition,
𝑣 = 𝑤𝑟, where 𝑟 is calculated as the average radius of the wheel. It
can be seen that the velocities (slopes) of the simulated wheels are
initially lower than those of non-slipping circular wheels, because the
10
friction coefficient is set as zero. (It is again noted that a circular
wheel in this setting does not move at all.) As the wheels are further
mobilized, however, the velocities approach those of circular wheels
under non-slip conditions, indicating that the degree of ‘‘friction’’ due
to the uneven surface geometry is physically plausible. The fact that the
proposed method can capture such complex effects of surface geometry
would be highly attractive for many problems in terramechanics and
other types of soil–machine interactions.

5.4. Debris flow over a complex basal terrain

As our fourth and final example, we apply the proposed approach
to the simulation of a granular flow over a complex basal terrain.
This example is motivated by two facts: (i) an increasing number of
numerical simulations are incorporating the geometry of real-world
terrains characterized by various sensing techniques (e.g. Li et al., 2021;
Cicoira et al., 2022; Xu et al., 2022; Zhao et al., 2023), and (ii) the
existing simulations have spent substantial cost to represent the com-
plex geometry of terrains with particles or other types of means (e.g. Xu
et al., 2019; Lei et al., 2022; Zhao et al., 2021). The terrain geometry of
this problem is adopted from that of a real-world debris flow occurred
in South Korea (Yune et al., 2013). Fig. 15 shows the problem geometry
and the locations of the source materials. The source materials are
modeled as dry granular materials with the same constitutive model
used in the second example. The model parameters are also adopted
from the second example, except the mean particle diameter which
needs to be scaled. To consider the difference between laboratory and
field scales, we scale the parameter to 10 mm following Rauter et al.
(2022).

For numerical simulation, we discretize the source materials with
6216 material points and introduce a background grid comprised of 2-
m-long cubes. To represent the basal terrain, we discretize the terrain
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Fig. 13. Soil-wheel interaction: simulation snapshots with 𝜔 = 4 rad/s. The particles are colored by their vertical displacements.
Fig. 14. Soil-wheel interaction: evolutions of the displacement magnitude, along with
analytical solutions to translation velocities of cylindrical wheels rolling on a flat surface
under a non-slip condition.

surface using triangular elements of ℎsurface = 2 m and discretize the
level set with ℎ𝐿𝑆 = min (ℎ, ℎsurface) = 2 m. We set the friction coefficient
of the basal terrain as 𝜇 = 0.2. For numerical stability, we set the
FLIP/PIC blending ratio as 𝜂 = 0.95. We simulate the problem until
𝑡 = 35 s with a time increment of 𝛥𝑡 = 7 × 10−3 s.
11
Fig. 16 presents snapshots of the granular-flow simulation, coloring
the material points by their velocity magnitudes. The results demon-
strate that the proposed approach can well simulate the sliding of
the granular materials over the complex terrain. It is reminded that
the existing MPM simulations have treated such complex terrains with
particles (e.g. Xu et al., 2019; Lei et al., 2022; Zhao et al., 2021).
Compared with the particle-based representation, the level set repre-
sentation has two advantages: (i) it can delineate the terrain geometry
more accurately, and (ii) it requires much less computational cost
for simulation. These two advantages would be highly desirable for
integrating MPM simulations with digitized terrains.

6. Closure

This paper has proposed an approach that can efficiently simulate
interactions between soft materials and rigid objects with complex
geometry. Built on the MPM, the proposed approach leverages the level
set method to delineate arbitrary surface geometry of discrete objects
that may interact with the MPM domain. A robust contact algorithm
has been developed to couple the level set objects with the MPM
domain. The proposed approach has been well verified for problems
in which the object geometry can also be represented analytically. Var-
ious examples have further demonstrated that the proposed approach
can efficiently simulate interactions between soft materials (e.g. soils)
and topologically complex objects (e.g. debris-resisting baffles, vehicle
wheel, and basal terrain), which would be far more difficult to simulate
for other methods. Thus the proposed approach would be highly at-
tractive for addressing an increasing number of geometrically complex
objects in digital-twin simulations.
Fig. 15. Debris flow over a complex basal terrain: problem geometry.
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Fig. 16. Debris flow over a complex basal terrain: simulation snapshots. The particles
are colored by their velocity magnitudes.
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