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Abstract

Granular materials are made up of particles with complex non-convex shapes that in many cases become connected by
ementation, sintering or other adhesive processes. This paper introduces and describes the methodology behind using the
onded particle method (BPM) with the level set discrete element method (LS-DEM-BPM), in order to model connected
ranular materials with arbitrary particle shape. The method is thoroughly detailed in both two and three dimensions. Examples
f use for the method are shown for three distinct contexts. The first is the modeling of a fault gouge, where it is demonstrated
hat the method has the potential to be predictive of the rate-and-state friction law and have key insights into the micromechanics
f the process. Another example is presented where a cone penetrates porous sintered ice showing that bond thickness has a
onsiderable effect on model behavior. The third example is a simulation using many unique bonds for each contact interface,
emonstrating the ability to simulate partial fractures. A discussion is also included on how and when this method can be
ither advantageous or disadvantageous.
c 2020 Published by Elsevier B.V.
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1. Introduction

Rocks, ices and metals are among many examples of materials that can be thought of as connected granular
aterials due to the clear presence of a grain scale that features adhesive mechanisms at grain to grain contact

ocations. For many applications, the physics at the microscale dominate behavior that is observed at the macroscale.
o understand the underlying mechanics of these materials, it is important to model the fundamental physics at the
rain scale that drives the macro-scale observations.

For example, considerable study has been done on the microscale of rock and how it affects the macro-scale
roperties [1,2]. Small flaws in the rock microstructure can cause large differences in fracture strength. This drives
he well known phenomenon that as rocks get smaller from breakage their strength increases [3]. The microstructure
f ice is also often granular when many ice particles sinter together during formation [4]. The sintering process
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causes the strength of ice to be dependent on the thickness of the sintered neck, which in itself is dependent on
time, temperature, humidity and initial particle shapes [5].

The bonded particle method (BPM) has been used in discrete element modeling (DEM) extensively since its
ntroduction by Potyondy & Cundall to model connected granular matter [6]. Particle bonding was originally done
ith spheres that were bonded by beams connecting the centers of the particles that behave linearly. Progress on the
odel has usually taken the form of enriching the linear bonding mechanics such as with non-local considerations,

r by improving shape capabilities [7,8]. Using spheres assumed that if the spheres were small enough compared
o the macro structure that their mechanical response would replicate the granular microstructure of a cemented

aterial. This assumption showed to be effective for simulating aspects of crack propagation in rock [9]. This
rinciple is also used for simulating breakage in sand where every particle is made of many small spheres bonded
ogether during oedometer testing [10,11].

Further developments in both DEM and BPM led to using the bonded particle method in polyheron shaped
articles. This was an important development since many studies have shown the importance of particle shape in
ranular materials [12,13]. The polyhedron based method proved effective for simulating the breakage of rock [14].
his also had important implications for masonry as the shape for bricks could be properly represented [15].

In this paper, the bonded particle model will be implemented with the level set variant of DEM (LS-DEM) for
he first time. LS-DEM has key advantages compared to other DEM variants [16]. The most notable is the ability
o capture any arbitrary shape for particles without limitations or special treatments. This has allowed the study of
ranular specimens through a true one-to-one comparison with experiment by utilizing exact shape for every particle
rom X-ray Computed Tomography (XRCT) imaging [17]. Validation experiments have provided unique levels of
onfidence in the method which allows for numerical experimentation beyond what is capable in a lab [12,18].
hese advantages could often be of interest to applications for the bonded particle model.

This paper is organized as follows. First the model will be described for both two and three dimensions detailing
oth LS-DEM and bonding where the simple linear version will be used. Three separate examples will be shown
ach highlighting advantages to using the LS-DEM variant of the bonded particle method. Finally we will conclude
ith a discussion over both the advantages and disadvantages with the model.

. Modeling methodology

.1. Level set discrete element method

LS-DEM is a discrete element modeling variant that utilizes discrete level sets and a surface point discretization
or representing particle shape through a leader–follower relationship. Level set functions were developed to define
bject surfaces implicitly [19]. Discrete level set functions, φ, determine the distance, δ, to an object surface given

a location, x where positive values are outside the surface and negative values are inside the surface. In this way
the morphologies are implicitly defined as the surface can be found through interpolation at the zero level set. Then
using a set of surface points, contact is established when the location of a surface point from a leader particle returns
a negative level set value from the follower particle (Fig. 1). Like in other DEM variants this necessitates a small
overlap between particles to occur to determine contact with an assumption made that the overlap is too small to
affect results.

The surface normal vector is then determined by taking the gradient of the level set function at that point,

∇φ(x) = n̂ (1)

Both the overlap and surface normal is used to get contact force through a force–displacement relationship based
contact model. No contact model is specific to LS-DEM, however it is important to consider that contact force
is heavily determined by the local curvatures of the contacting surfaces. Hertzian contact is often used in other
DEM variants, however this model is only accurate for spheres [20]. Due to the high variety of possible contacting
curvatures, a linear model will be used with the assumption that having enough contacts will average out the error.
The linear model has been shown many times to give reasonable results for LS-DEM [16]. Both normal and pre-slip
shear forces use the linear model,

Fn = knδnn̂ (2)

ˆ
∆Fs = ksvs∆t s (3)
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Fig. 1. Illustration of LS-DEM contact. Red surface points are inside the follower particle and are therefore considered in contact. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where kn and ks are the normal and shear stiffnesses respectively, vs is the relative velocity in the shear direction
between contact points, and ∆t is the timestep. Using Coulomb friction, the shear force has a maximum value
which allows slip,

Fmax
s = µ∥Fn∥ (4)

where µ is the static friction coefficient. Due to the frictional aspect being history dependent, shear forces use an
incremental approach. Moment is calculated by crossing the total contact force with the vector pointing from the
center of mass of the particle to the contact point, c,

M = c× F (5)

Once forces and moments are found, the kinematics are calculated using Newton’s laws and a global damping
formulation. Global damping, which is controlled by the global damping parameter, ξ , is applied as described in
Lim et al. [21] for both translational motion,

vn+1/2
=

1
1+ ξ∆t/2

[
(1− ξ∆t/2)vn−1/2

+
∆t
m

F
]

(6)

nd also rotational motion, which uses an iterative predictor–corrector procedure to converge to the correct angular
elocities. The algorithm is described in full in Lim et al. and is an integration of Euler’s equations of motion with
nertia proportional damping,

α1 = [M1 + ω2ω3(I2 − I3)− ξ I1ω1]/I1 (7)

α2 = [M2 + ω3ω1(I3 − I1)− ξ I2ω1]/I2 (8)

α3 = [M3 + ω1ω2(I1 − I2)− ξ I3ω1]/I3 (9)

Global damping is not always added for DEM simulations but is often useful. The explicit time integration
sed in DEM often commands the use of small time steps and therefore higher rates of forcing to maintain
easonable simulation durations [22,23]. The global damping alleviates the dynamic errors introduced by maintaining
uasi-static conditions.

.2. Bonding model

Particle bonding models in DEM can usually be described within two different types which have been termed
he parallel bonding model and the contact bonding model when introduced [6]. In LS-DEM-BPM both of these
ariants may be implemented as shown in Fig. 2.
3
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Fig. 2. Sketch in 2D of each bonding model for a single leader–follower bond pair. Note that for parallel bonding only the closest point is
used to make a bond while for contact bonding all points closer than dc are used.

The parallel bonding model connects contact points with a bond that resists relative motion and relative rotation.
onding points are determined at the initialization step of the simulation by searching for nearby particles. In
S-DEM-BPM, this is done in a manner similar to contact where two particles are bonded if a surface point of a

eader particle is within a maximum bonding distance of the surface of the follower particle. This is determined by
valuating the follower particle’s level set function at the leader particle’s surface point location. This maximum
onding distance is set by the user and is termed the cohesive distance, dc. For the case of parallel bonding, only
he surface point that returns the smallest level set value from the follower particle is used.

The contact bonding model is similar to the parallel bonding model except the bonds have infinitesimal thickness
nd therefore do not resist rotation. A clear use for this in LS-DEM-BPM is by allowing many contact bonds per
article pair that together can resist rotation while simultaneously allowing for the bond to not necessarily break
ll at once.

While in this paper the linear method will be used for both parallel and contact bonding, neither are limited by
his. Non-local methods have shown to provide accurate results and can be implemented by modifying the model
imilarly to the studies where it was implemented with spheres [7,8].

.2.1. Bonding mechanics
Each parallel bond is made with a defined radius, r , that defines the cross-section of a cylindrical beam that

onnects the bond points. Circular cross sections are used because they bear the closest resemblance in shape to a
inter neck, adhesive or any other bonding agent. This radius is used to compute the bond area, Ā, and moment of
nertiae for both the rolling, Ī , and twisting, J̄ , axes of motion,

Ā =

{
2r t, t = 1, 2D
πr2, 3D

Ī =

{
2
3r3t, t = 1, 2D
1
4πr4, 3D

J̄ =
{

1
2πr4, 3D (10)

The bar above variables in this section identify variables as pertaining to bonding characteristics, for example Ī is
the moment of inertia for the bond and I is the moment of inertia for a particle. Bonds act on particles through a
force displacement relationship and a moment angle relationship calculated incrementally in both the normal and
shear directions.

∆F̄n = k̄n Ā v
p
rel,n∆t (11)

∆F̄s = k̄s Ā v
p
rel,s∆t (12)

∆M̄n = k̄s J̄ωrel,n∆t (13)

¯ ¯ ¯
∆Ms = kn Iωrel,s∆t (14)
4
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where the total force and moment from the bond can be computed by adding the normal and shear components

F̄ = F̄nn̂+ F̄s ŝ (15)

M̄ = M̄nn̂+ M̄s ŝ (16)

The variables k̄n and k̄s are the stiffnesses in both the normal and shear directions for the bond. The normal
stiffness can be understood by considering the elasticity of the adhesive agent. Suppose a bonding agent has a
Young’s modulus, Ē , then the stiffness could be calculated from knowledge of the cylindrical geometry of the
bond. Here the area we have just determined, and the length is approximately the cohesive distance used as our
search area to determine bonding,

k̄n =
Ē Ā
dc

(17)

The shear stiffness can be similarly understood with the shear modulus, Ḡ, or more often is set as a ratio between
the shear stiffness and the normal stiffness.

The bonds are allowed to break, which is determined by stresses computed using the following beam equations,

σ̄c > σ̄ =
F̄n

Ā
+
|M̄s |r

Ī
(18)

τ̄c > τ̄ =
|F̄s |

Ā
+
|M̄n|r

J̄
(19)

ond breakage occurs when the total stress in the beams exceed a breakage stress. When a bond breaks, the bond
s eliminated from the model and therefore does not produce any further forces or moments.

For the case of using contact bonding, there is no concept of bond thickness or moment resistance which
implifies the bond force equations to,

∆F̄n = k̄n v
p
rel,n∆t (20)

∆F̄s = k̄s v
p
rel,s∆t (21)

ote that the bond stiffness is different here than in parallel bonding. The two definitions of bond stiffness can be
elated to each other in the following way,

k̄contact
n =

k̄ parallel
n Ā

n̄
(22)

where n̄ is the number of contact bonds for the interface. The breakage condition is also simplified to being a
critical breakage force rather than a breakage stress.

F̄n,c > F̄n (23)

F̄s,c > F̄s (24)

The critical breakage forces can still be determined by breakage stress however with knowledge of the discretization
density of the surface points per unit surface area, ρp,

F̄n,c =
n̄σ̄c

ρp
(25)

F̄s,c =
n̄τ̄c

ρp
(26)

2.2.2. Bond damping
Without damping in the model, the bond forces will oscillate which would cause premature breakages and

instability. For many applications, particularly for quasi-static tests, global damping is enough to remove these
oscillations. Applications with more dynamic interaction prefer to not use global damping however, which requires
an ability to dampen bond motion locally. The goal of local bond damping is for both the translational and rotational
motion of the bonded contact to be critically damped so that the stress in the bond is equilibrated at the fastest rate.
5
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For translational motion the normal equation for critical damping in a one degree of freedom system is used,

F̄damp
= vn

[
2
√

k̄n Āmeq

]
− vs

[
2
√

k̄s Āmeq

]
(27)

here the first term controls the damping in the normal direction to the surface of the particles and the second
ontrols damping in the shear direction. The term meq is the equivalent mass computed from the masses of each
onded particle,

meq =
m(1)m(2)

m(1) + m(2) (28)

otations are considered similarly,

M̄damp
= ωn

[
2
√

k̄s J̄ I eq
n

]
+ ωs

[
2
√

k̄n Ī I eq
s

]
(29)

here I eq
n and I eq

s are the normal and shear equivalent moments of inertia calculated from the normal and shear
oments of inertia from each particle at the point of bonding. For example in the normal direction I eq

n can be
calculated as,

I eq
n =

I (1)
n I (2)

n

I (1)
n + I (2)

n
(30)

and the normal moment of inertia can be found from the parallel axis theorem being applied to the scalar moment
of inertia about the normal axis which is determined from the particle’s moment of inertia tensor,

In = (n̂ · I)n̂+ m∥c∥2 (31)

In the case of contact damping, of course the damping moment is unused and the same equation for damping
force can be used with just a simple change to the stiffness aspect,

F̄damp
= vn

[
2
√

k̄nmeq

]
− vs

[
2
√

k̄smeq

]
(32)

In general it is recommended that either global damping or bond damping is used since applying both can easily
over damp the system and therefore get inaccurate results from bond forces being unable to reach equilibrium. In
cases of low global damping though, the bond damping force can still be applied but may need to be scaled down
for achieving the best results.

By combining this section with the previous two, the mathematics for calculating forces and moments can be
understood. To illustrate how all the mechanics come together in implementation, a pseudocode is shown below for
calculating contact and bonding for a single particle pair.
Algorithm 1 Calculate forces and moments

for all particle pairs {i, j} ← {leader, f ollower} do
for all surface points of leader particle, pi do

if surface point and follower particle have intact bond then
{Get Bond Forces and Moments} F̄n ,F̄s ,M̄n ,M̄s ← Eqs. (11), (12), (13), (14)
{Check for Breakage} σ̄ , τ̄ ← Eqs. (18), (19)
if Eqs. (18) & (19) false then

Set bond to broken
else
{Apply Damping} F̄damp, M̄damp

← Eqs. (27), (29)
end if

else if φ j (pi ) < 0 then
{Get Contact Surface} n̂, ŝ← Eqs. (1), vs/||vs ||

{Get Forces and Moments} Fn, Fs, M ← Eqs. (2), (3), (4), (5)
end if

end for
end for
6
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Fig. 3. (a) SEM micrograph of a healed gouge adopted from [34]. Arrows show cohesive bridges (bonds) forming between aggregates (b)
dealized numerical model of the fault.

. Model behavior for fault rupture tests

In this first application of the proposed methodology, we model the rupture of a fault subjected to compression
nd shear, and the ensuing formation of a granular gouge. In particular, we focus on modeling the fracture of surface
sperities and the deterioration of cementation at the grain scale, and we identify their effect on the macroscopic
riction. A plethora of experimental studies have focused on delineating this macroscopic frictional behavior for a
atural or model fault [24–26], which have inspired a series of theories [27,28] culminating in the development of
he rate-and-state framework [29,30]. However, these theories remain largely phenomenological given the relative
parsity of micromechanical modeling of these complex grain-scale processes. DEM enhanced with contact aging
as employed in [31] to investigate the frictional behavior of gouge, and reproduce several characteristics observed

n the laboratory. Further, DEM with bonding was used in [32] to study gouge formation under constant-velocity
hearing of two surfaces, and in [33], to study the effect of the heterogeneity of the slip surface on the overall
haracteristics of the slip behavior. In the following, we will present how LS-DEM-BPM can be used to gain
urther insight into the frictional response of a fault, and we will discuss its implications to rate-and-state theory.

.1. Setup

Fig. 3a shows an SEM micrograph of a natural gouge, which has been subjected to chemical healing processes,
nducing cementation between aggregates [34,35]. Fig. 3b shows the idealization of that system within the proposed
ramework. In particular, we consider a 2D cell comprised of 10,000 angular particles modeled after a quartz
and [36] bonded together. The process of cementation is modeled by parallel bonding neighboring particle surface
oints that lie within a threshold distance as described in Section 2.2. The properties of particles and cement bonds
re reported in Fig. 4. We will further assume that the grains themselves cannot experience fracture, although such
n extension is possible within the LS-DEM framework [37].

The cell is first vertically compressed to a pressure σ , allowing for periodic boundary conditions in the x-
direction. To impose shear, the upper wall is displaced horizontally, while keeping a constant vertical stress. A
preimposed weak interface is introduced in the middle of the specimen, in order to control the initiation of the
rupture (Fig. 3b). The velocity of the upper wall is first kept constant at a value v0 = 1 mm/s until steady state
s achieved, and is then instantaneously increased to a value v f = 10 mm/s, until the new steady state is reached
Fig. 5a). During this process, we measure the evolving population of interparticle bonds as well as the shear stress
t the upper boundary, yielding the transient macroscopic friction angle µ = τ/σ .

.2. Rate-and-state friction law

Before delving into the results of the numerical experiments, we briefly review the standard rate-and-state friction

aw used to describe these systems. The law relies on the Coulomb assumption with a rate and state dependent

7



J.M. Harmon, K. Karapiperis, L. Li et al. Computer Methods in Applied Mechanics and Engineering 373 (2021) 113486

d

w
a

a
t
w
v

3

a
i
r
F
e
b
a

s
e

Fig. 4. Particle and cement properties for the LS-DEM-BPM model of the gouge.

Fig. 5. (a) Velocity history (b) Rate-and-state friction law.

friction coefficient τ = µ(v, θ) σ , where v is the slip rate and θ is an internal variable (state) representing history
ependence, typically interpreted as the contact lifetime:

µ = µ0 + a log
v

v0
+ b log

v0θ

L
(33)

here µ0, v0 are the reference friction coefficient and reference velocity, respectively, L is a length scale, and a, b
re parameters of the model. The evolution of state is described by the aging law [29]:

θ̇ = 1−
vθ

L
(34)

nd can give rise to either velocity strengthening (a−b > 0) or velocity weakening (a−b < 0). Fig. 5 demonstrates
he evolution of friction in these two cases. For bare slipping surfaces, experimental evidence suggest velocity
eakening behavior [25]. In the presence of gouge, most evidence points to velocity strengthening [25], while
elocity weakening has also been reported in the literature [38,39], depending on the inertial number [40,41].

.3. Results

Fig. 6a shows the evolution of macroscopic friction against the fault slip for the same experiment carried out
t two different pressures σ1 = 1 MPa and σ2 = 2 MPa respectively. Following the initial rupture at the weak
nterface, both systems arrive at a steady state as witnessed by the small fluctuations in friction. These fluctuations
epresent stick–slip events arising from the repeating formation and collapse of force chains. This is evident in
ig. 7a, which shows the heterogeneous contact force and bond force chains at that state for the higher pressure
xperiment. Fig. 6b shows the rate of bond breaking for the two experiments. After an initially pronounced bond
reaking phase, we observe a decrease in the rate of bond breaking towards the first steady state, at a slip of
pproximately 2 mm.

Upon the imposed sudden increase in the velocity in the second stage of the experiments, we observe a
pontaneous increase in friction in line with experimental evidence and rate-and-state theory. This so-called “direct

ffect” is the signature of an increase in the number of activated contacts. Gradually, the contact network rearranges

8
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Fig. 6. (a) Friction as a function of slip (b) Rate of bond breakage (averaged over 1% shear strain increments) as a function of slip.

Fig. 7. Particle configuration with bond force chains (in black) and contact force chains (in blue) for the low pressure experiment for states
(a) right before the velocity jump and (b) at the final steady state. Darker particles represent those connected by cement bonds; Lighter
particles represented unbonded particles. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

itself, and force chains appear to localize at the asperities (Fig. 7a). We observe local fractures at the asperities as a
result of these dynamic stress concentrations. This leads to widening of the gouge, and in turn to reduced particle
interlocking which reduces macroscopic friction. In Fig. 6b, we observe that the rate of bond breaking indeed
increases in both systems at a slip >2 mm, only to eventually decay towards a new steady state at a slip > 3 mm.
At that point only few bonds continue to experience fracture. The widened fault at the final steady state is shown
in Fig. 7b for the lower pressure experiment. The final steady state friction coefficient depends on the pressure,
which affects the accumulated damage to the asperities and alters the dynamics of the contacting particles within
the weakened zone. In this experiment we observe that lower pressure leads to rate-strengthening behavior, while
a higher pressure leads to minor rate-weakening behavior which is likely due to greater damage at the asperities.

Although no direct comparison with experiments is attempted in this study, this framework exhibits great potential
in reproducing the range of behaviors observed in the laboratory. The incorporation of particle morphology ensures
that we can accurately account for particle interlocking and rolling, which has been shown to be important for fault
gouge modeling [42]. This completely avoids the need for numerical proxies, when approximating the system by
idealized shapes such as disks [31]. Further, the incorporation of local (particle surface) bonding ensures an accurate
representation of contact scale cementation. Uncovering the complex interplay between the inertial properties of the
gouge, and the evolving surface roughness and gouge width [43], would clearly require a systematic investigation
of the parameters of the system. The latter could then shed light on the parameters of the rate-and-state theory, such
as the length scale L . The above lie beyond the scope of this application.

4. Model behavior for cone penetration tests

This application will study the model behavior during a cone penetration test. Particularly we will look at the
effect of sintering neck size on strength. The sintering process is an important aspect for many classes of materials
such as metals and ices. Being able to predict the changes in strength with increasing amounts of sintering is highly
desirable.
9
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Fig. 8. Particle and cement properties for the LS-DEM-BPM model of the ice specimen.

An example of an application where understanding the strength of a sinter network in a granular material is
ample acquisition on space missions to icy worlds. NASA has made it a priority to send missions to moons
n the solar system with global oceans such as Europa and Enceladus due to the relatively high probability of
nding life [44]. Due to the very low temperatures and near vacuum conditions, porous ice solidifies at a very
low rate meaning the planetary surface likely remains quite porous [45]. Due to this, large amounts of the surface
ould correctly be described as a connected granular material. This is particularly true for the most geologically

ctive areas, which are often of highest interest, such as the south pole region of Enceladus. This region has
eysers emitting ice particles from the subsurface that either eject into Saturn’s E-ring or fall back onto the nearby
urface [46]. This section is built to be a first attempt at mimicking a metal cone penetrating an icy surface such
s Enceladus in this region where ice is granular.

.1. Specimen preparation

The specimen was prepared by pluviation of particles into a cylindrical container. A set of 100 unique granular
eometries were used as particles taken from an XRCT image of Hostun sand. During pluviation, the particles were
ade slightly larger so that when the specimen is complete there is empty space where the sintered necks will be.

nstead of all the particles being dropped from the beginning, particles were only added when previous particles
ad settled. Each new set of added particles were placed directly above the specimen, resulting in the particles
epositing at a low velocity. This created a loose specimen with a porosity of 46%. Particle parameters used during
he pluviation process were the same as during testing and are shown in Fig. 8. When bonding the particles, a
ohesive distance of 0.5 mm was used with several neck sizes.

.2. Cone penetration test

The cone penetration test was conducted by descending a cone with a diameter of 1 cm at a rate of 0.2 m/s into
the ice specimen. Considerable global damping was used to ensure quasi-static conditions despite the relatively high
penetration rate. Due to this, no bond damping was necessary for this case. The stress was calculated by adding
up the vertical forces on the cone tip and dividing by the cross sectional area of the cone. The test is conducted
three times to investigate the effect of the thickness of the sintered neck being represented as bonds. The thickness
is set by a ratio between the radius of the sintered neck, r , and the radius of the circumscribed sphere of each

article, R. The three thicknesses tested are r/R = 0.01, r/R = 0.25 and r/R = 0.5. Fig. 9 shows a visualization
f the cone penetrating the ice specimen at various stages of loading for r/R = 0.5. During the early stages of the
oading, such as in Figs. 9c and 9d where the cone displacement is at 1.5 cm, small cracks near the tip can easily be
bserved with these cracks causing only local deformation in the area of the cracking. In Fig. 9d it can be observed
hat cracking propagates laterally as the particles are pushed away from the cone center, however the bonds remain
ntact directly below the tip providing continued resistance. At this time of loading stress is continuing to build
ith occasional minor cracks causing only minimal reductions in strength as seen in Fig. 10. Above a displacement
f a little over 2 cm the specimen experiences heavy brittle fracture for both r/R = 0.25 and r/R = 0.5. In the
10
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Fig. 9. Visualization of ice specimen with r/R = 0.5. Color indicates the displacement of the particle away from the center of the specimen
with darkest color being a displacement of one cone radius. Black lines indicate intact bonds and red lines are broken bonds. (a) Top view
of initial specimen. (b) Specimen after complete fracture. (c) Top view at 1.5 cm cone displacement. (d) Profile of specimen at 1.5 cm cone
displacement. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

visualization in Fig. 9b, large displacements and heavy breakage can be easily observed in most of the specimen
corresponding to the large stress drop measured.

For the test where r/R = 0.01, the very low sintering results in very little resistance which is expected. For this
case the specimen does not experience the same reductions in strength from heavy breakage but instead has a much
more consistent level of resistance as what may be expected from a specimen with no bonding at all.

This model behavior is consistent with trends seen for ice that experiences brittle breakage with the advantage
of being able to investigate the micromechanics of the sintered bonds [47]. In future work with modeling strength
of sintered particles it would be advantageous to utilize the shape morphing aspects of the level set method to better
represent particles morphologies and different stages of sintering. Level sets are extensively used for tracking shape
changes from physical processes [19]. Implementing the many theoretical models that predict sinter growth with
the level set evolution methods is a promising avenue for more accurate modeling in the future.

The results for the cone penetration test show the considerable affect the thickness of particle bonds have on the
behavior of the model, and therefore the importance of understanding how particles adhere together. A common
assumption in BPM is to take the thickness of the bond as the minimum of the thicknesses of the two particles
being bonded. This likely a good assumption for non-porous material such as rock where the cementation completely
surrounds each particle, but probably an insufficient assumption for more porous substances such as ice or metal
that has not been fully sintered together.

5. Model behavior for adhesive failure

There are many instances where an adhesive agent that is wished to be modeled between particles may not break
all at once. In these cases, modeling with a single breakable bond is not ideal since relative rolling between particles
should cause failure in only the tensile region of the bond. In order to model these cases, this section proposes to
have multiple contact bonds at each contact pair instead of a single parallel bond. Here an example of this idea
is presented with a simple constructed material built to absorb energy. The construction of periodic and lattice
structures to tune viscoelastic behavior is common in applications from the nanoscale [48] to the macroscale [49].
In this study, the choice of structure is a lattice of very stiff spheres bonded with a compliant adhesive. While
LS-DEM-BPM could handle any other geometry just as well, spheres show that for this case the utilization of
11
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Fig. 10. Relationship between stress on cone and cone displacement into the specimen for various sinter neck thicknesses. Due to the brittle
ature, the cone stress on specimens with thicker bonds falls abruptly at a critical level.

Fig. 11. Particle and cement properties for the LS-DEM-BPM model of the sphere specimen.

surface points for bonding delivers the advantage of having multiple bonds per particle pair that may be useful
enough even for sphere based applications.

5.1. Model setup

A cubical lattice specimen was prepared by placing spheres in a five by five grid. Each sphere was allowed to
bond only vertically, allowing spheres to move laterally. This was done so that the structure could buckle more
easily therefore increasing its potential for dissipation. Spheres were ordered so that leader particles were placed
below follower particles, so therefore bonds are centered at the surface of the bottom particles and directed toward
the top particle. The surface points for each sphere were seeded so that each bond is made of 14 separate and evenly
spaced contact bonds. Walls were added to the top and bottom of the specimen with equal stiffness and friction
to the spheres. The specimen is shown in Fig. 12a in the initial state before compression. Whereas normally in
LS-DEM a linear contact model is used, for this case a Hertzian contact model is used due to the spherical shapes,
changing the force displacement relationship to,

Fn =
4
3

E∗
√

Rδ3
n (35)

here R is the effective radius which for uniform spherical contact is equal to half the sphere radius and for sphere
o wall contact is the equivalent to the sphere radius. The material parameter E∗ is defined in the usual way for
ontact of identical materials,

E∗ =
E

2(1− ν2)
(36)

Exact model parameters used are shown in Fig. 11. The value of breakage stress for the bonds in this example was
normal distributed across the interfaces which will provide some heterogeneity to the otherwise identical sphere

columns.

12
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Fig. 12. Visualization of the compression of spheres bonded with the contact bonding model. (a) Initial state (b) 10% strain (c) 20% strain
(d) Fully unloaded.

Fig. 13. The stress vs. strain relationship for various levels of bond strength. Figure (a) shows plot for various mean values for critical
stress. Figure (b) shows plot for various standard deviations of critical stress.

5.2. Model results

The specimen underwent one full loading and unloading cycle with a peak strain of 20% for each test conducted.
tresses were calculated by dividing the total force on the top wall by the maximum cross sectional area of the
tructure defined as, Astruc = 10Rsph where Rsph is the radius of the spheres. Visualizations of the simulations
ere rendered to observe bulk behavior in the specimen shown in Fig. 12. It can first be observed that breakages
enerally occur in the middle row of bonds, which is sensible since that is the area where the highest stress will
aturally occur. Bond breakage does however occur outside of the middle row as well to a lesser degree. After
nloading, most columns appear to come back to full height, showing evidence that very high levels of deformation
o not injure the ability of the bonding method to recover the initial state.

Constitutive behavior of the specimen can be seen in Fig. 13. During loading, three distinct phases of behavior
an easily seen for all cases tested. First is the pre-buckling phase where the structure behaves closely to the material
ehavior of the spheres. The structure then buckles, resulting in nearly constant stress with limited evidence of bond
reakages. Finally, considerable bond breakages occur while simultaneously the densification of the spheres create
ew sphere to sphere contacts resulting in higher strength.

Upon unloading, significant hysteresis is observed the magnitude of which being inversely proportional to the
verage bond strength as shown in Fig. 13. Interestingly, the variance of the bond strength has a minor effect as
ell, where a higher variance in bond strength causes more hysteresis. This can be explained by the fact that higher
ariance of bond strengths results in more bonds being broken if stresses in the bonds on average remain lower
han the average critical stress.

. Discussion

The most considerable advantage to using LS-DEM-BPM is the ability to use any arbitrary shape. For a fully
onded granular material, particle shape will affect the fabric of the bonds as it does the fabric of contact forces
13
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for an un-bonded granular material. For cases where there are very few fully debonded particles, the polyhedron
method could be sufficient since the interlocking effect of concave features may not play as large of a role as it
would for an un-bonded granular material. However, an interesting direction of future work with using level sets will
be utilizing images of the microscale for materials such as rock or sintered materials to investigate the importance
of grain shape in the material behavior. XRCT and SEM images of the grain-scale for these materials allow access
to the true shape characteristics of the grains and grain boundaries. With plenty of research confirming that fractures
generally occur along grain boundaries, representing the correct shape for the grains will likely prove to be a key
aspect for using BPM for such applications [50].

The advantage of arbitrary shape becomes even more pronounced in applications such as the fault gouge where
he material behavior beyond the breakage of bonds is important. Once particles have broken all of their bonds, those
articles will behave as an un-bonded granular material. The importance of particle shape in an un-bonded granular
aterial is well documented [51] and has been the driving reason for many DEM variants attempting to define

hape in general ways [52]. Especially for the fault gouge where shear is the driving mechanism for deformation,
he correct particle shape is critical as it has the largest effects on the predictions for shear [53].

The most significant disadvantage with LS-DEM-BPM continues to be the efficiency of the method. Some
pplications ask for the simulation of millions of particles, and while this is certainly possible with LS-DEM-BPM
t is unfeasible without large computational resources. New developments in efficiency with LS-DEM such as using
ctree methods may prove to alleviate though not completely solve this issue [54]. Until the new generations of
omputer processors or the implementation of LS-DEM with GPU parallelization, LS-DEM is limited to particle
umbers on the order of < 106 particles. This limitation is important for applications where a granular specimen
ust interact with large objects, however studies for even these cases will often show that there are diminishing

eturns for using smaller and smaller particles [55]. For cases where the goal of the modeling is to investigate the
aterial behavior by using a representative volume element, this limitation is less important as many studies have

hown success at replicating experiment with much fewer particles [56].

. Conclusion

The implementation of the bonded particle method with the level set discrete element method has been introduced.
his allows the bonded particle method to be utilized with a DEM method that allows for arbitrary particle shape.
xamples of possible applications of this method have been shown. The fault gouge example demonstrated the
apability of the method to model a fault gauge and the rate-state friction model. This example highlighted the
otential for this model in applications where the unbonded granular materials play a significant role. An example
f a cone penetrometer fracturing ice demonstrated the effects of bond thickness on the model behavior is significant.
he third example showed the potential for a modeling strategy where each particle pair may have many bonds that
o not necessarily break all at once. This strategy allows for crack growth within each particle bond and correctly
eakens only the bonding region where tensile forces were present. Finally a discussion highlighted the advantages
f particle shape despite drawbacks in efficiency. This procedure could open doors to new knowledge of materials
hat can be defined as a connected granular material.
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